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Abstract: Large concentration values are of particular interest in assessing hazards or nuisance
associated with clouds or plumes of toxic, lammable or malodorous gases. Previously we have used
statistical extreme value theory to analyse the probability distribution of large concentrations at a
fixed point in space. Here we present a probabilistic model for the temporal occurrence (at a discrete
set of points in space — the receptor locations) of large concentrations in a plume. We consider a
fixed downwind distance, and take the plume centreline to be at one of a discrete set of crosswind
positions. Changes of centreline position are modelled by a continuous time Markov chain. At each
receptor location the large concentration values are taken to occur at the points of a Poisson process
in time whose rate depends on the distance from the centreline. We present some results from fitting
this model to data from atmospheric point source experiments. The fitted parameters for the Markov
chain are not very robust or reliable. Possible reasons for this are discussed, and suggestions are made
for how the results might be improved.
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1. INTRODUCTION Since the dispersion takes place in a turbulent
atmosphere, the concentration field is random,
and we are interested in the probability distri-
bution of large values of concentration, and of
the times and locations at which they occur. We
have previously considered the former [Mole et
al. 1995; Anderson et al. 1997; Munro et al.
2001]; here we concentrate on the times at which
large values of concentration occur. We restrict
attention to the case of a source emitting at
a constant rate into a stationary atmospheric
flow, so the concentration is also stationary.

The hazards or nuisance associated with clouds
or plumes of toxic, flammable or malodor-
ous gases dispersing in the atmosphere can be
strongly influenced by the occurrence of large
concentration values. As well as the size of the
concentration value, the spatio-temporal struc-
ture of the concentration field is also impor-
tant. For example, for exposure to toxic gases,
the damage done depends, in a nonlinear way,
on the concentration history over the whole ex-
posure interval [Ride, 1995]. With flammable

gases, whether ignition occurs at a particular Anderson et al. [1997] used a switching Pois-
location and time depends on the concentration son process model for the values and the occur-
value at that point, but to determine whether rence times of large concentrations, at a fixed
burn-up of a cloud is possible it is necessary to point in space. The Poisson process in that
have detailed knowledge of the space-time struc- model switched on and off, to mimic the in-
ture of the concentration field. termittent concentration time series observed

in meandering atmospheric plumes [see, for ex-
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ample, Hanna 1984; Murlis 1986; Mylne and
Mason 1991; Mole and Jones 1994], with large
concentrations being observed when the recep-
tor location is close to the instantaneous plume
centreline.

As a first step towards a model for the space-
time structure of large concentration values, we
introduce a model which seeks to represent the
meandering of the plume, and the feature that
large concentration values are more likely to oc-
cur close to the instantaneous plume centreline
than far from it. While the concentration values
themselves could also be included in the model,
for simplicity we model only the times of oc-
currence of large values at a finite, discrete set
of spatial points (which will be thought of as
the receptor locations where concentration mea-
surements are made). We take large values to
be those concentrations which exceed a specified
high threshold.

We consider a fixed distance downwind of the
source, and let the plume centreline take one of
a finite, discrete set of crosswind positions. For
simplicity, as a first approximation, we ignore
vertical movement of the plume centreline. We
assume that the movement of the plume cen-
treline can be described by a continuous time
Markov chain with constant transition rate ma-
trix.

At a fixed crosswind location we assume that
large concentration values occur as the points of
a Poisson process in time. To produce the de-
sired variation with relative position, the rate
of the Poisson process needs to be a decreas-
ing function of distance from the instantaneous
plume centreline position.

In §2 we describe the details of the overall model
that results from these assumptions, and derive
the corresponding likelihood function. §3 deals
with the fitting of the model to experimental
data by maximising the likelihood, and §4 dis-
cusses the results and makes suggestions for im-
proving them. s

2. THE MARKOV MODULATED
POISSON PROCESS MODEL

Suppose we have m receptors, at locations 7y,
(k =1,...,m). We model the meandering of
the plume by assuming the crosswind centreline
position Y (¢) can take one of a set of values y;
(4 = 1,...,n). We assume that Y(t) is gov-
erned by a continuous time Markov chain with
constant transition rate matrix @ = (g;;). Then

Figure 1. The times T; between occurrences
of large concentration values, and the receptor
locations R; at which they occur.

PIY(t+ At) = y;|Y (t) = yi]
‘ = 0ij + qij At 4 o(At)

where d;; is the Kronecker delta, ¢;; > 0 for
i #J, ¢ <0, and

n

Zqi]‘ =0.

=1

At receptor location ry, large values of concen-
tration are taken to occur at the points of a
Poisson process of constant rate A;; (> 0) if
Y (t) = y;. If we let Ni(t1,%2) be the number of
large concentration values at ry in (f3,%2), then
this means that

P[Ni(t,t + At) = 0]¥ (t) = y;]
=1 = i xAt + o(At)

P[Ni(t,t + At) = 1|V () = gi] = \igAt + o(At)

P[Ni(t,t + At) > 1|Y (t) = y;] = o(Ab).

The resulting overall model for the occurrence
of large concentration values is a homogeneous
(in time) Markov-modulated Poisson process
(MMPP) - see for example Fischer and Meier-
Hellstern [1992].

We consider the time intervals 7; (1 = 1,..., M)
between occurrences of large concentration val-
ues, having aggregated these occurrences over
all receptors. We let R; be the receptor loca-
tion at which the ith large value occurs — see
Figure 1. We-also let N(t1,t2) be the number
of large concentration values, over all receptors,
which occur in (1, ), i.e.

m
N(t1,t2) = ZNk(t17t2)-
k=1

Then
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Plt <T1 < t+ At, Ry =, Y(t) = y;1Y (0) = ui]
— P[N(0,t) = 0, N(t,t + At) = 1, Ry =5,
Y (t) = y;|Y (0) = yi]

= P[N(0,¢) = 0,Y (t) = ;Y (0) = i)

x P[N(t,t+ At) = 1LY (t) = ;1Y (0) = yi]

x P[Ry =i, Y (t) = 33|V (0) = v
= hoO80 (32) = hy(rina
where

hij(t) = PIN(0,t) = 0,Y (t) = y;]Y (0) = y,(] )

A = i Ak
k=1

since the aggregate over all receptors of the indi-
vidual Poisson processes gives a Poisson process
whose rate is the sum of the individual rates.

Writing A®) = diag(Mk,...  Ank) and H =
(hsj) we have

P[t <y <t+At, By = e, Y(8) = yj|Y(0) = yi]
= [H(t)A(’“)]

Similarly,
P[t1 <Ti <t +At,ta < Ty < tg + Atsg,
Ry = Ty, Ra = Ty, Y (81 + t2) = 11]Y(0)

At.

ij

= yi

= ZP[tl <T) <t + Atq, Ry

=1

=Tk

Y (t1) = y;1Y(0) = yi)
Plta < Ty <t + Ata, Ry = Tky,
Y(t: +t2) = ulY (t1) = 5]
= [H(tl)A(’“)] Aty [H(tg)A(kZ)] At
= 5 il

= [H(tl)A(kl)H(tz)A(’“ﬂ] ) At1 Ats.

Extending this argument to all the occurrences
of large concentrations gives

P[tj<Tj<tj+Atj;Rj=’r.kj fory=1,...,

M
Y (Z tj) =y |Y(0) =y
1=

M;

[HH ALk >At]

Considering all possible centreline positions y;,
we have

il

P[tj <Tj <tj+ Aty Ry = 7y
M|Y (0) = v

L)

1=
A(kJ)At ] } ,

{ [M
)T. If we assume that the

where v = (1,1,...,1
centreline position Y is initially in equilibrium
(with stationary state 7 satisfying 7Q = 0 and
mu = 1) then

forj=1,...,

P[t]’ <T; < tj+Atj;Rj = Tk; forj=1,...

)

i=1
Thus, given the observations {I; = t;} and
{R; = ry,}, the likelihood £ is given by

_W{HH AL }

To be able to fit a model to experimental data
by maximising £, we need to specify the transi-
tion rate matrix Q for the plume centreline po-
sition (which also determines 7), and the Pois-
son process rates A; x for the occurrence of large
concentration values at the receptors. H is fully
determined by these, as shown below.

, M)

(2)

2.1 The Matrix H
From the definition (1),
hij(t + At) = P[N(O,t + At) =0,
Y (t + At) = y;|Y (0) = vi)

=S P[N(0,) = 0,Y(t) = w|Y (0) = 3]
=1

x P[N(t,t + At) = 0|Y (t) = il
x P[Y (t + At) = y;|Y () = v]
= h,;j (t)(l -2 'At)(l + ijAt)

+Zhu

I#3
which implies that

d
Ezhij( ) h’u (t qjj —

Y1 - )\lAt)ql] At + O(At)

+ Z hzl ql]

I#3

= ha(t)(@; — Ay),
=1
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where

A=) A® = diag(\, ..., \n):

k=1
Thus
dH
i H(Q - A),
with H(0) = I, so
H =@M, (3)

2.2 Plume Centreline Movement

We choose n = 5, so we have 5 possible positions
of the plume centreline. We take these positions
to be equally spaced, with separation Ay, and
assume that the middle position coincides with
the mean centreline position. Furthermore, we
assume that the plume movement is symmetric
about the mean position, and that the centre-
line can only move to positions adjacent to its
current position. This implies that ¢ must take
the form

-y v 0 0 o

a -11-a 0 0
Q=8 o & -1 L o],

0 01-a -1 o

0 0 O vy =y

where «, 8 and v are constants, with 8 > 0,
¥ >0and 0 < a < 1. B is the rate of tran-
sitions from the mean position, and «f is the
rate of transitions from each of the extreme po-
sitions. This allows for the possibility that, in
different cases, the plume spends different pro-
portions of time in the extremities and in the
mean position. The equilibrium distribution 7,
satisfying #@Q = 0 and mu = 1, is

™= (a‘7 b, C7 b7 a)’

where
"7 a2 -}
b= — Y
2{a+v(2-a)}’
(1—a)y
a+y(2—-a)

We would expect that the plume centreline
would be more likely to be found near its mean
position than in the extremities, in which case -
a < b < ¢, implying that

a<Min{%,~y}. (4)

2.3 Occurrence of Large Concentrations
at Receptors

We expect that the closer a receptor is to the
plume centreline, the greater the number of
large concentration values it will experience. To
represent this behaviour we let the rate of occur-
rence of large concentration values at receptor
location ry be a Gaussian function of its dis-
tance from the plume centreline. Thus

(re — 3:)*
Aik = pexp {—T )
where ¢ and p are positive constants. o is a
measure of the instantaneous plume width, and
p is the rate at which large concentrations occur
at the plume centreline.

3. FITTING THE MODEL TO EXPER-
IMENTAL DATA

The experimental data used were from the point
source releases described by Mole and Jones
[1994]. The model was fitted to the cases with
4 receptors in a crosswind line, namely experi-
ments 8, 9, 10 and 11. These were all conducted
under unstable atmospheric conditions, over flat
terrain. The distance between the extreme re-
ceptors was 6m, and the downwind distance z
from the source varied from 7.5m to 15m in the
different experiments. The duration of these ex-
periments was roughly 40-50 minutes each, with
a sampling frequency of 10Hz.

The possible plume centreline positions
Y1,...,Ys (with constant separation Ay)
were chosen by reference to the number of
exceedances, at the receptors, of a high con-
centration threshold. The aim was for y3 to
be close to the mean centreline, and for y; and
ys to be towards the extremes of the plume
meandering,.

The concentration exceedances were “declus-
tered” to remove dependence between them, us-
ing the method described in Mole et al. [1995].
The number of observed exceedances M, their
times {t;} and receptor locations {ry,} were
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Table 1. Fitted values of @, 8, v, p and ¢. 7 is the distance downwind of the
source, and Ay is the chosen distance between possible plume centreline directions.

-z (m) | Experiment | Ay (m) ! B (Hz) ¥ p (Hz) | o (m)
7.5 11 3.00 0.00405 528 0.00282 | 0.138 | 0.694
10 10 3.03 0.00000 1.27 3.50 0.0994 | 2.55
12.5 8 2.73 0.385 0.0203 0.371 0.0386 | 2.43
15 9 2.97 0.971 1.54 0.331 0.0694 | 1.29

Table 2. Fitted values of a, 8, v, p and ¢ in Experiment
10 (10m downwind of the source), for different choices of
the distance between possible plume centreline directions,

Ay.

Ay (m) a B (Hz) ¥ p (Hz) | o (m)

4.00 0.00000 | 1.27

1.84 0.0928 | 3.30

3.03 0.00000 | 1.27

3.50 0.0994 | 2.55

3.00 0.489 | 0.0480 | 0.0959 | 0.0450 | 2.77

2.50 0.455 | 0.0596 | 0.0627 | 0.0400 | 2.94

2.00 0.438 | 0.0844 | 0.0325 | 0.0350 | 3.22

1.50 0.148 0.510

0.00236 | 0.0313 | 3.65

then used in the likelihood £ given by (2), and
the model parameters a, 83, 7, p and o were es-
timated by maximising £. Some details of the
numerical calculation of £ are given in the ap-
pendix.

4. RESULTS AND DISCUSSION

Table 1 shows the results of fitting the model to
the experimental data. The plume width o was
of order 1m in all cases, consistent with physi-
cal expectation. The rate of occurrence of large
concentrations on the centreline, p, was of order
0.1Hz or slightly less. The largest frequencies of
observed exceedances over all the receptors were
about 0.02-0.03Hz. This is consistent with the
fitted values of p, since a fixed receptor will not
always be close to the instantaneous plume cen-
treline. '

The fitted values of a, 8 and v, which govern
the plume meandering in the model, seem less
satisfactory, since they show large variations be-
tween the experiments. The values of @, A and
~ were also very sensitive to the chosen value of
Ay, as is illustrated in Table 2 (see especially
the change from Ay = 3.03m to Ay = 3.00m).
The larger values of 8 in Tables 1 and 2 corre-
spond to unrealistically large translation speeds

for the plume centreline. Furthermore, in the
cases when the values of 3 seem realistic, o and
~ do not satisfy the expected constraint (4).

Part of the problem with the results for o, 5 and
~ seems to arise because the likelihood surface
has too many peaks of statistically insignificant
height difference. This may well be because the
datasets do not have enough receptor locations
to resolve plume meandering with much con-
fidence. This could be remedied by using ex-
perimental datasets obtained by Lidar [see, for
example, Jorgensen et al. 1997; Nielsen et al.
1997; Bennett and Doocey 2001}, in which case
there can be several hundred receptor locations.
A disadvantage of using Lidar data would be
that the spatial resolution is only of order 1m
in the crosswind direction (compared with of or-
der 1cm for the data used in this paper), so that
large concentration values are much less well re-
solved.

A major drawback to the part of the model deal-
ing with plume meandering is that we used only
n = 5 possible positions for the plume centre-
line. This is unlikely to be sufficient to model
plume movement successfully. However, calcu-
lating the likelihood £ involves evaluating the
exponential of an n X n matrix, which quickly
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becomes computationally prohibitive as n is in-
creased. An alternative which could make larger
values of n feasible is to use Markov chain Monte
Carlo (MCMC) methods [Gilks et al., 1996].
With larger values of n the model for the ma-
trix @ would also have to be designed carefully
to avoid proliferation of parameters. A different
approach which could avoid this difficulty would
be to model the plume movement with a process
which has a continuous state space of possible
positions, for example a diffusion process.
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7. APPENDIX

Two aspects of the numerical calculation of the
likelihood £ are worth commenting on:

Firstly, in calculating the matrix product in (2),
we used the following algorithm to avoid over-
flow or underflow:

p=0, V=mn
forj=1to M
V =VH(t;)A®)

n

'UZZW

i=1
V=vlVv
p=p+lnv
end
L£=ePVu.

Secondly, the exponential matrix e(@—2)t in (3)
was calculated by utilising the fact that (Q—A)¢
is tridiagonal. MAPLE was used to produce
FORTRAN code to calculate the exponential of
a tridiagonal matrix, and this code was then
used in the calculation of the likelihood £.



